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Abstract
In uranium abandoned mine areas, particularly with mine tailings and open-pit lakes, 
the mobility of potentially toxic elements still acts as a source of surface and groundwater 
contamination. The water of open-pit lakes from Ribeira de Bôco mine and associated 
groundwater and surface water from the area is neutral and with low metal contents. 
However, some water samples are contaminated with Cd, Cr, Cu, Fe, Mn, As, and U and 
should not be used for human consumption or in agricultural activities. The baseline 
uranium threshold is considerably high for groundwater, which is supported by geogenic 
features and mining activities. 
Keywords: Geogenic Contents, Uranium mines, Surface and Groundwater, Contamination

Mobility of Uranium in Groundwater-Surface Water 
Systems in a Post-Mining Context (Central Portugal)

I.M.H.R. Antunes1, P.C.S. Carvalho2, M.T.D. Albuquerque3, A.C.T. Santos4

1ICT | University of Minho, Campus de Gualtar, 4710 - 057 Braga, Portugal, imantunes@dct.uminho.pt
2University of Coimbra, MARE – Marine and Environmental Science Centre, Department of Life Sciences, 

Coimbra, Portugal, paulacscarvalho@gmail.com
3Instituto Politécnico de Castelo Branco | CERNAS | QRural and ICT | Universidade de Évora; Portugal, 

teresal@ipcb.pt
4GeoBioTec, Department of Geosciences, University of Aveiro, Aveiro, Portugal, uc41232@uc.pt

Introduction
Water resources has become a serious 
environmental problem on a global scale. 
Nowadays, the global concern is to ensure 
sufficiency in water quantity for public 
health, food security, and water access 
demand (UNESCO, 2019). However, this 
natural resource is becoming scarce because 
of increased consumption, extended 
droughts, and water quality degradation, 
mainly associated to anthropogenic activities 
(Satapathy et al., 2009; Val et al., 2019; Mello 
et al., 2020). Future scenarios for water 
resources are predicting water scarcity, with 
a decrease in the amount of precipitation and 
limitation on groundwater recharge for the 
next five decades. 

The impact from mine waste on socio-
economically disadvantaged communities 
worldwide continues to be documented 
on surface-groundwater systems (e.g., 
Dambacher et al., 2007; Jiang et al., 2015; 
Babayan et al., 2019; Pal and Mandal, 2019; 
Flett et al., 2021). Pollution studies associated 
with uranium mines are commonly carried 
out within the context of watersheds (e.g., 
Fernandes and Franklin, 2001; Winde, 2010). 

In Portugal, for 80 years ago, uranium 
mining activities ceased leaving as a legacy 
over 61 radioactive ore deposits involving 
uranium and radium production. These 
mining activities have been abandoned 
into the environment, without recovery 
processes, and the resulted areas contain 
tailings and rejected materials deposited 
and exposed to the air and water since those 
years. Consequently, uranium and potentially 
toxic elements (PTE) are leaching on these 
areas, which act as a source of surface and 
groundwater contamination (e.g., Antunes et 
al., 2020; Neiva et al., 2019). 

Uranium and arsenic contamination pose a 
concern for the protection of the environment 
and for water quality (Skierszkan et al. 2020). 
Geochemical environment, groundwater 
provenance and hydrogeochemistry will affect 
the mobility of selected metals and As (e.g., 
Bird et al. 2020), particularly in post-mining 
contexts. Growing worldwide concern over 
uranium contamination of groundwater 
resources has placed an emphasis on 
understanding uranium mobility and potential 
toxicity in groundwater-surface water systems 
(Byrne et al., 2021). 
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The purpose of this study is to identify 
the geochemical characteristics of surface 
and groundwater with a particular focus on 
uranium and other trace elements mobility 
in an abandoned uranium mine from 
Portugal, where water resources are scarce 
and consequently a regularly monitoring 
and quality is needed for integrated water 
management.

Study area
In Portugal, between 1908 and 2001, 
different deposits of radioactive ore were 
extracted from the production of radium 
and uranium (north and central Portugal). 
The old uranium mine of Ribeira do Bôco 
(40˚31´17´´N; 7˚38´26´´W) is located about 
2.5 km SW from Arcozelo village (Gouveia, 
central Portugal). The area is in the Central 
Iberian Zone of the Iberian Massif (e.g., 
Farias et al., 1987), which is one of the many 
mines from the uranium-bearing Beiras 
area. The ore deposit is mainly of supergenic 
nature with dominant mineralization in 
autunite and torbernite. The regional geology 
is characterized by smoky and zoned quartz 
veins and basic rocks with pitchblende, 
sulphides, and secondary uranium minerals 
(Cameron, 1982). Underground exploitation 

resulted in waste rock dumps with high 
concentration of radionuclides. High levels 
of radiation have been reported in the 
surrounding water and soil (Carvalho, 2014).

The mine was exploited in two open-
pit mines, located on the east of the Ribeira 
de Bôco stream, between 1986 and 1988. 
A total of 32.5 tons of ore were exploited 
with an average content of 0.97% U3O8 and 
containing 31.7 kg of U3O8. The pit lake 
contains approximately 108,000 m3 of water, 
with 20 meters deeper (Fig. 1a). Two dumps 
containing tailings, waste rocks, and rejected 
material from the mine exploration (total of 
39,580 m3) are located close to the open pit 
lake and are slightly covered by vegetation but 
was not yet restored (Fig. 1b). Surface runoff 
and mine water are discharged into a small 
creek, which displays typical features of mine 
contamination, such as deposition of yellow-
reddish precipitates (Fig. 1c, d).

The area has rural characteristics with 
vegetation that is dense and mainly with 
herbaceous species (Fig. 1e). Around the 
abandoned mine, small agricultural areas 
occur with potato crops, vineyards, and 
pastures (Fig. 1f), which are irrigated by the 
Ribeira de Bôco stream and wells located in 
the stream margins.

Figure 1 Field images illustrating the old abandoned mine area of Ribeira do Bôco (Central Portugal): a. 
open pit lake; b. mine dumps; c, d. water mine with ochre-precipitates; e. vegetation and crops; f. well in an 
agricultural area.
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Methods 
A total of twenty-one water samples, 
corresponding to open pit water (Rb2, 6, 
16, 24), water mine drainage (Rb5), surface 
water (Rb1, 3, 7, 9, 11, 13, 15, 19, 22), and 
groundwater (Rb4, 8, 10, 12, 14, 17, 18, 23), 
were selected on the study area (Fig. 2). The 
temporal variability of water was represented by 
two sampling campaigns, during a hydrological 
year, and representing the raining and dried 
seasons. All water samples were collected, and 
analysed for physico-chemical properties, as 
well as selected potentially toxic elements. The 
water points located outside mine influence 
area (Rb18, 19, 22, 23; Fig. 2) have been selected 
to characterize the natural geochemistry of the 
area. The distribution of water sampling points 
was not uniform due to the nonuniformity of 
well distribution and water stream availability. 
The main purpose of the wells is for water 
supply to residents, and domestic animals and 
agricultural irrigation.

Temperature, pH, Eh, and electrical 
conductivity (EC) were measured in situ using 
a multiparameter HANNA HI929828 model. 
The water samples were filtered through 0.45 
µm pore size membrane filters. Those for the 
determinations of major and trace elements 
(e.g., Ca, Mg, Fe, U, Th, As, Co, Cd, Pb, Cu, Zn, 
and Mn) were acidified with suprapur HNO3 
at pH 2 and analysed by Inductively Coupled 
Plasma Optical Emission Spectrometry 
(ICPOES), using a Horiba Jovin Yvon JV2000 
2 spectrometer. Anions were determined in 
non-acidified samples by ion chromatography 
with a Dionex ICS 3000 Model. Duplicate 
blanks and laboratory water standards were 
analysed to assess quality control of the 
obtained results. The accuracy of the methods 
was verified using certified patterns and the 
measurement precision was greater than 5%. 
The laboratory water analyses were obtained at 
the Department of Earth Sciences, University 
of Coimbra, Portugal.

Figure 2 Geographical setting of studied area (Central Portugal) and location of water sampling points (Rb): 
x – open pit, ο – surface water, • – well. 
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Results
The Piper diagram shows the main 
geochemical characteristics of the water from 
Ribeira de Bôco area, considering the water 
samples collected upstream and downstream 
mine influence (Fig. 3a, b). The dominant 
hydrochemical facies of most water samples 
is undefined type or locally (Na+K)-SO4

2- 
while the water collected on the influence 
of mine area, shows a (Na+K)-Cl- water 
type to undefined one, according to Piper’s 
classification. There is no significant variation 
between the water collected on the raining 
and dried period (Fig. 3).

The hydrochemical processes that control 
chemistry in the study area could be expressed 
by the contribution of major ions to the water 
mineralization (expressed through the EC). 
However, the water has lower mineralization 
and the correlation found between EC and 
major ions are lower (R2: EC-SO4

2- = 0.2182; 
EC-Mg = 0.0311; EC-Cl- = 0.0732; Na-Cl = 
0.0732), otherwise the bicarbonate ion appears 
with a better correlation (R2: EC-HCO3 = 
0.7001; EC-Ca = 0.8893; EC-Na = 0.7652), 
suggesting the influence of water-rock 
interaction processes, including weathering 
of minerals, with release of alkaline metals 
and production of alkalinity. Particularly 
on surface water, these correlations seem to 
corroborate higher geological and agricultural 
activity contributions.

Most water samples are neutral (pH 
ranges from 5.5 to 7.4) and showing low 
metal content (EC = 22-264 µS/cm; TDS 
= 4-157 mg/L). The spatial geochemical 
variability indicates that the water collected 
under the influence of mine activities tend to 
present the highest EC and TDS values, and 
HCO3-, K, Ca, Mg, Cd, Co, Cu, Fe, Mn, Ni, 
Pb, Sr, and As contents. However, there is no 
significant variation on water composition 
between raining and dry period.

The water sample Rb5, receiving water 
mine drainage, is the most mineralized water 
and contains the highest contents of Fe, Mn, 
Cd, Sr and As (Table 1). The highest Fe (up 
to 20.1 mg/L) and Mn (2.9 mg/L) contents 
are supported by the occurrence of yellow-
reddish precipitates (Fig. 1c, d).

The maximum contents of As, Th and U 
in groundwater are higher than water from 
the open pit (Table 1), probably due to pH-Eh 
conditions. In the area, there is an elevated U and 
As baseline in groundwater and surface water. 
Regional uranium mobilization is sufficient 
to produce water U-enrichment, which is 
promoted by the weathering of sulphide-ore 
deposits and consequent U concentration into 
fractures around ore deposits that might act 
as preferential conduits for groundwater flow 
and chemical weathering. 

Some water samples are contaminated 
with Cd, Cr, Cu, Fe, Mn, As and U and 

Figure 3 Hydrochemistry classification (Piper diagram) of the water from the Ribeira de Bôco area: a. water 
samples located outside mine influence; b. water samples in the mine influence.
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should not be used for human consumption 
or in agricultural activities, considering water 
framework referenced values (Portuguese 
Decree, 1998; 2017; World Human 
Organization, 2011).

Conclusions
Mining regions constitute an important 
challenge in the management of water 
resources since its impacts could be an 
environmental risk and human health 
concern.

Portugal has important resources of 
groundwater that may be strategic to face the 
expected dry years to come. Furthermore, 
regularly monitoring and evaluating 
groundwater quality is needed for integrated 
management and policy making.

In the surveyed area, the baseline 
threshold of some potentially toxic elements 
is considerably high, in which concerns to 
groundwater and surface water. The natural 
geogenic conditions (geological setting and 
local geology) and mining activities are the 
main control on the mobility of potentially 
toxic elements in the groundwater-surface 
water systems, particularly in this post-
mining affected area.

Development of methods to establish 
the location of contaminated groundwater 
entry to surface water environments, and 
the potential effects on ecosystems, is crucial 
to develop both site-specific and general 
conceptual models of uranium behaviour 
and potential toxicity in affected surface 
and groundwater environments, which will 
be a support to the application of adequate 
preventive and monitoring methodologies in 
post-mining contexts. 
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