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Abstract
  � is study shows the microbe-metal interactions that allow the fractionation of Ni and 
Co in sulphate reducing bioreactors. Ni and Co precipitation experiments with sulfate 
reducing bacteria (SRB) or with biogenic sul� de e�  uent were carried out.  Lower NiS 
precipitation occurred in the presence of SRB as compared to the experiments with bio-
genic sulphide, even when both Ni and Co were added. � is and the identi� ed proteins 
expressed by SRB shows that Ni is complexed by extracellular proteins generated by SRB, 
which could allow selective recovery of Ni and Co from tailing streams in Australia. 
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Introduction 
Mine tailings and waste streams are known 
as “the largest environmental liability of the 
mining industry” le�  over due to the histori-
cal mining activities in Australia (� urtell et 
al. 2018). Some of these tailings came from 
the mining of Ni sulphidic ores (Nehdi and 
Tariq 2007; Sima et al. 2011), where Co is 
mostly present (Crundwell et al. 2011). Due 
to the low recovery e�  ciencies (70–85% 
Ni, 20–50% Co), tailing lagoons from this 
mine activity represents a potential pollut-
ant threat, but also an opportunity to recover 
these metals for economic revenue (Simon-
not et al. 2018). 

Up to date, conventional technologies 
for the treatment of metal-containing waste 
streams are based on the addition of chemi-
cals for precipitation, thus creating high 
amounts of a secondary waste with no option 
of reprocessing. Selective recovery of Ni and 
Co in waste streams for reprocessing is a chal-
lenge due to their similar chemical behaviour. 
� erefore, the addition of reagents is a com-
mon practice for concentrated streams that 
allows selective separation through precipi-
tation, ion exchange and solvent extraction 

 (Flett 2004). � ese options are not economic 
nor environmentally supportable. 

Sulphide precipitation, on the other hand, 
is an excellent chemical to remove metals 
from waste streams because it allows the for-
mation of highly insoluble salts, even at ppm 
and ppb concentrations, that can be directly 
reprocessed (Villa-Gomez and Lens 2017). 
In this sense, sul� de produced by biological 
sulphate reduction is a step forward, because 
it eliminates the costs associated with the ac-
quisition of sulphide reagents, as it uses a pol-
lutant already present in tailings (sulphate) 
and � nally, it allows the production of sul-
phide on-site, thus avoiding transportation 
of a hazardous chemical (Villa-Gomez and 
Lens 2017). � e process relies on the activity 
of sulphate reducing bacteria (SRB) that re-
duces sulphate (SO4

2-) to sulphide (S2-), which 
can be used to recover metals as sulphidic 
precipitates (Sánchez-Andrea et al. 2016; Vil-
la-Gomez and Lens 2017). So far, biological 
sulphate reduction has been assessed at full-
scale to treat acid mine drainage in passive 
systems and to recover metals such as cop-
per, and zinc from wastewaters coming from 
metal associated processes in active systems 
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(bioreactors) (Sánchez-Andrea et al. 2016). 
While showing very successful results, this 
technology needs to be further developed to 
allow separation of metals such as Ni and Co 
for their recovery.

In bioreactors, the interactions between 
metals and the microbial environment can af-
fect metal precipitation. � is can be due by 
substances associated to microorganisms can 
enhance aggregation/settling or metal com-
plexation (Hennebel et al. 2015). All these 
could open alternatives for metals recovery 
and separation. It has been demonstrated that 
SRB generate extracellular proteins that com-
plex metals such as zinc and Ni, chromium, 
and molybdenum in natural environments 
(Beech and Cheung 1995; Fortin et al. 1994; 
Guibaud et al. 2005; Moreau et al. 2007a; 
Moreau et al. 2007b). � is is a protection 
mechanism against metals and occurs by an 
alteration of their protein expression pro� les 
(Gillan 2016; Moreau et al. 2007b; Schneider 
and Riedel 2010). While these defence mech-
anisms are reported, no one has looked at 
how these mechanisms complex metals and if 
there is a di� erence in complexation depend-
ing on the metal. � erefore, the aim of this 
study was to determine the metal-microbe 
interactions in sulphate reducing bioreactors 
as a way to foresee opportunities for selective 
metal recovery of Ni and Co. � e a�  nity pro-
teins produced by SRB due to the presence of 
Ni and Co were identi� ed through metage-
nomics, proteomics and metaproteomics 
techniques were applied.

Methods 
A � st set of batch experiments with Co and 
Ni and centrifuged biogenic sulphide e�  uent 
(170 mg sulphide/L) from a sulphate reduc-
ing bioreactor were carried out to assess the 
di� erences in the characteristics of the Ni and 
Co sulphide precipitates. 100 or 500 ppm of 
Ni or Co as chlorides were added into 160ml 
of biogenic sulphide that contained 25 mM of 
sulphide. To determine which compound(s) 
can contribute to the di� erence of the metal 
precipitates formed in biogenic sulphide, ac-
etate (0.4 g/L sodium acetate) and phosphate 
(1.86 g/L KH2PO4 and 1.1 g/L K2HPO4), 
mainly present in the VFA-S was added indi-
vidually into chemically produced sulphide. 

Each experiment was done in triplicate in se-
rum bottles of 250 mL. Samples were collect-
ed a� er 20 minutes for particle size distribu-
tion (PSD) and 4 days for scanning electron 
microscopy (SEM) analysis. 

A second set of experiments were carried 
out with SRB biomass from a Continuous 
Stirred-Tank Reactor (CSTR). � e experi-
ments were done in triplicate using serum 
bottles (120 mL) with a working volume of 
100 mL at 120 rpm and 30 °C. In each sys-
tem, biomass (0.2g VSS/L), nutrients (Al-
exander J. B. Zehnder 1980), carbon source 
(sodium lactate), sulphate (sodium sulphate) 
and metals (NiCl2 and/or CoCl2·6H2O) were 
added. Sulphide concentration was measured 
every day, while COD, sulphate, pH and met-
als were measured at the end of the experi-
ments. � e following metals concentrations 
were evaluated: 1) 0, 10, 50, 100, 200 and 500 
mg Ni2+/L; (2) 0, 10, 50, 100, 200 and 500 mg 
Co2+/L; (3) a mixture of 100 mg Ni2+/L with 
10, 50 and 100 mg Co2+/L. 

Ni and Co concentrations were measured 
with Perkin Elmer AAnalyst 400 Atomic Ab-
sorption Spectrometry (AAS) in an air-acety-
lene � ame. Dissolved sul� de was determined 
spectrophotometrically by the colorimetric 
method described by Cord-Ruwisch (Cord-
Ruwisch 1985) using a UV-VIS-NIR spec-
trophotometer, while sulfate was quanti� ed 
using Dionex™ ICS-1100 Ion Chromatog-
raphy System (IC) equipped with a Dionex 
AS-DV Autosampler. Visual characterization 
and semi-quantitative analysis of the Ni and 
Co sul� des produced in VFA-S were carried 
out using JEOL JSM 6610 Scanning Electron 
Microscope coupled with Energy-dispersive 
X-ray spectroscopy (SEM-EDS). PSS Nicomp 
Accusizer 780 AD was used to analyze PSD of 
Ni and Co sul� des. 0.5 ml of the samples was 
diluted to 80ml of Milli-Q water to ensure 
minimal particles were present in the water.

Samples of the liquid phase from the batch 
experiments were taken for protein identi-
� cation using a Q-Exactive HF-X available 
through Proteomics Australia a� er trypsin 
digestion. � e analyses of microbial commu-
nity structure will be carried out using the Il-
lumina platform at the Australian Centre for 
Ecogenomics at UQ, this information will be 
used as data library on the protein analysis.
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Results and discussion 
Metal precipitation experiments with biogen-
ic sulphide showed that Ni precipitates were 
larger than Co precipitates (Figure 1). Acetate 
and phosphate present in the bioreactor were 
mainly responsible for the presence of larger 
Ni precipitates (7.80±0.52 μm and 12.28±0.75 
μm of mean size), while these compounds 
did not a� ected Co precipitates (3.70±0.27 
μm and 6.18±0.79 μm of mean size). Both 
compounds have been previously reported 
to a� ect particle size of metals (Esposito et al. 
2006; Villa-Gomez et al. 2012). By contrast, 
Co solids could showed aggregation in the 
matrix (Figure 1), thus demonstrating a dif-
ferent interaction with the substances present 
on the biogenic sulphide.

� e experiments with SRB biomass 
showed that an increase in Co addition, in-

crease the sulphide production by SRB up to 
277.8 mg/L (200 mg Co/L) due to Co sulphide 
precipitation (Figure 2), while at 500 mg/L, 
a signi� cant decrease (129.8 mg/L) was ob-
served, suggesting that the inhibitory concen-
tration threshold was surpassed. By contrast, 
sulphide produced in Ni system decreased to 
20.8 mg/L at 100 mg/L Ni supplementation, 
before increasing to 97.7 mg/L at 500 mg/L 
addition (Figure 2). 

Co precipitation was high (90-95%) at 
10-200 mg Co/L added in the experiments 
with SRB biomass (Figure 3a), while low re-
moval (42%) at 500 mg Co/L was observed, 
probably due to the lack of sulphide for pre-
cipitation (Figure 2). Ni removal was lower 
than 45% at the di� erent Ni supplementa-
tion concentrations (Figure 3a), and even 
non-removal was detected at 100 mg Ni/L 

Fi gure 1 Secondary electron images and EDS of Ni and Co precipitates formed with biogenic sulphide.

Figure 2 Remaining sulphide (Δ) and total sulphide (o) production (=remaining sulphide + sulphide in metal 
sulphide precipitates) in the experiments carried out with SRB biomass with Co addition (blue) and Ni ad-
dition (orange). 
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(data not shown) despite the available sul-
phide for precipitation (Figure 2). Similar 
behaviour (low Ni precipitation and high Co 
precipitation) occurred when both metals 
were added together (Figure 2). � ese results 
suggest that in the presence of Ni, SRB gen-
erates extracellular proteins that selectively 
complex Ni, while Co does not generate this 
response. Unlike the experiments with SRB 
biomass, the experiments carried out with 
only biogenic e�  uent displayed 75% of Ni 
removal and 72% of Co removal for Ni and 
Co addition at 10-200 mg/L (Figure 3b). � e 
decreased Ni and Co removal at 500 mg/L 
supplementation was a result of a lack of 
enough sulphide for metal precipitation (Fig-
ure 2). In these experiments, also both Ni and 
Co equally precipitated regardless being add-
ed together (Figure 3). Overall comparison 
among the experiments with SRB biomass 
and with only sulphide e�  uent allows to con-
� rm that complexation of Ni is occurring in 
the system, that could be due to extracellular 
proteins generated by SRB in response to Ni 
stress. � is has been previously observed by 
Fortin et al. (1994) on the SRB Desulfotomac-
ulum sp., where in the presence of Ni with or 
without Fe, Ni remained mostly soluble at the 
cell surface, when cells were subjected to 100 
mg/L of both metals, while with Fe only, large 
amounts of FeS (70% of the Fe) precipitated at 
the bacterial cell surface and extracellularly.

Microbial and protein analysis
� is is the � rst study that shows the pro-
teins involved in the complexation of Ni in 
sulphate reducing bioreactors. � e high-
throughput techniques used in this study 
have been scarcely used to understand the 

e� ect of metals on protein and gene expres-
sion in engineered systems.   Previous work 
has identi� ed proteins in the complexation 
of metals in pure cultures and with non-
speci� c protein identi� ers (Fortin et al. 1994; 
Lenz et al. 2011; Moreau et al. 2007b). Such 
information is highly relevant to develop a 
technology that maintains Ni complexation 
in continuous sulphate reducing bioreactors 
and thus, separates Ni from Co. In total, over 
200 proteins were isolated from the experi-
ments with SRB biomass, but this study only 
considered the � rst 10 identi� ed proteins as 
they had the maximum number of peptides 
to bind metals. Some of these proteins were 
exclusively encountered on Ni or Co experi-
ments (Table 1), while others were shared in 
both experiments as well as in the control 
experiments with no metals added (data not 
shown). � e high a�  nity proteins associated 
with Ni precipitation were involved in trans-
fer of electrons (Rubredoxin-oxygen oxido-
reductase), iron uptake (Bacterioferritin) 
and outer membrane. Desulfovibrio desulfur-
incans ND132 and Desulfomicrobium bacu-
latum DSM 4028 were the main responsible 
for these proteins. � e proteins encountered 
exclusively in the SRB biomass experiments 
with Co, were related to ATP, oxidoreductase, 
periplasmic and binding proteins. � e same 
SRB organism was found to be responsible 
for the expression of these proteins but also 
Pseudomones and Marinobacterium. [NiFe] 
hydrogenases were also detected in the exper-
iments, which obviously harbor Ni (Ogata et 
al. 2016) and are widely predominant in SRB 
species with versatile respiratory electron 
transport chain system such as Desulfovibrio 
(Zhuang et al. 2015). However, they were not 

Figure 3 Ni (blue) and Co (orange) precipitation results in the experiments with a) SRB biomass and c) 
biogenic sulphide e�  uent.
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exclusively detected only on the presence of 
Ni. Contrary, in a previous study, expressed 
autolysis-inducible proteins and cell wall 
autolysis by-products that bounds Ni where 
detected on a pure culture of Desulfotomac-
ulum sp. (Fortin et al. 1994). Nevertheless, 
this study used a mixed culture unlike the 
aforementioned study, which shows that the 
Ni e� ect can be found in other SRB species 
and thus, it could allow the development of a 
more versatile and e�  cient sulphate reducing 
bioreactor system for Ni recovery. 

Conclusions
� e results presented in this study shows that 
in the presence of Ni, SRB generates extra-
cellular proteins that selectively complex Ni, 
while Co does not generate this response and 
tends to precipitate with sulphide. � e modi-
� cation of the removal behaviour of Ni and 
Co through SRB culture is a sustainable solu-
tion to selectively recover both metals from 
mine drainages, thus providing an environ-
mental and economic bene� t.
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